Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.7	CSE	20/11/2018

INTERNAL ASSESSMENT TEST - 3

Dept: CSE	Sem / Div:5 th A & B	Sub: Automata Theory & Computability	S Code:15CS54
Date:27/11/2018	Time:3.00-4.30	Max Marks: 40	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's
		PART A			
1	a	Design TM that accepts for string concatenation on L={1}. Input will be (w1,w2) and out put is w1w2 Write Transition Diagram and ID's for 11b111.	10	L3	CO4
	3	Briefly explain Turing Machine model. Give its definition.	5	L2.	CO4
		Convert the following CFG to PDA. $S \rightarrow aABC$ $A \rightarrow aB \mid a$ $B \rightarrow bA \mid b$ $C \rightarrow a$	5	L3	CO4
	- b-common	OR	de la companya de la		
2	a	Design TM that accepts $\{ 1^n 2^n 3^n n \ge 1 \}$. Obtain the computation for 112233.	10	L3	CO4
	b	Convert the following PDA to CFG. $M=(\{q_0,q_1\},\{a,b\},\{A,Z\},\delta,\ q_0,Z,\{q_1\})$ Transitions of PDA are as follows: $\delta(q_0,a,Z)=(q_0,AZ)$ $\delta(q_0,b,A)=(q_0,AA)$ $\delta(q_0,a,A)=(q_1,\epsilon)$	5	L3	CO4

Page: 1 / 2

	C	Explain two types of descriptions of Turing Machines	5	L2	CO4
			St. St. and architecture		
		PART B			
3	a	Define and explain the following TM. i) Multi Tape Turing Machine ii) Non-Deterministic Turing Machine.	10	L2	CO5
	b	Define Post Correspondence Problem(PCP). Explain PCP with one example.	5	L3	
	C	Explain the model of Linear Bounded Automata.	5	L2	COS
		OR			
4	a	Briefly explain the techniques for Turing machine construction.	10	L2	
		Prove that Every language accepted by a multitape TM is acceptable by some single-tape TM (that is, the standard TM).	5	L2	
		$HALT_{TM} = \{(M, w) The Turing machine M halts on input w \}$ is undecidable.	5	L2	CO5

19 | 11 | 18 Prepared by: Pramod Kumar PM